Advantages of Multi-shell Diffusion for Studies of Brain Development in Youth
bioRxiv, ISSN: 2692-8205
2019
- 3Citations
- 30Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- CrossRef3
- Captures30
- Readers30
- 30
Article Description
Diffusion tensor imaging (DTI) has advanced our understanding of how brain microstructure evolves over development. However, the proliferation of multi-shell diffusion imaging sequences has coincided with notable advances in the modeling of neuronal diffusion patterns, such as Neurite Orientation Dispersion and Density Imaging (NODDI) and Laplacian-regularized Mean Apparent Propagator MRI (MAPL). The relative utility of these newer diffusion models for understanding brain maturation remains sparsely investigated. Additionally, despite evidence that motion artifact is a major confound for studies of development, the relative vulnerability of these models to in-scanner motion has not been described. Accordingly, in a sample of 123 youth (ages 12-30) we evaluated DTI, NODDI, and MAPL for associations with age and in-scanner head motion at multiple scales, including mean white matter values, voxelwise analyses, and tractography-based structural brain networks. Our results reveal that multi-shell diffusion imaging sequences can be leveraged to robustly characterize neurodevelopment, even within the framework of DTI. However, these metrics of diffusion are variably impacted by motion, highlighting the importance of modeling choices for studies of movement-prone populations. Our findings suggest that while traditional DTI is sensitive to neurodevelopmental trends, contemporary modeling techniques confer key advantages for neurodevelopmental inquiries.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know