Microstructural plasticity in the bilingual brain
bioRxiv, ISSN: 2692-8205
2019
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The human brain has been uniquely equipped with the remarkable ability to acquire more than one language, as in bilingual individuals. Previous neuroimaging studies have indicated that learning a second language (L2) induced neuroplasticity at the macrostructural level. In this study, using the quantitative MRI (qMRI) combined with functional MRI (fMRI) techniques, we quantified the microstructural properties and tested whether second language learning modulates the microstructure in the bilingual brain. We found significant microstructural variations related to age of acquisition of second language in the left inferior frontal region and the left fusiform gyrus that are crucial for resolving lexical competition of bilinguals’ two languages. Early second language acquisition contributes to enhance cortical development at the microstructural level. Significant statement The ability to communicate in two languages is becoming more and more important in the increasingly global community. Does learning a second language (L2) affect the human brain development? At the macrostructural level, there has been neuroimaging evidence revealing neuroplasticity induced by the acquisition of L2. Here, we employed the quantitative MRI technique to investigate the microstructural variations related to L2 learning, and found that age of acquisition of L2, but not its proficiency, is associated with cortical proliferation. Early second language acquisition seems to enhance cortical development at the microstructural level.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know