PlumX Metrics
Embed PlumX Metrics

High-fidelity continuum modeling predicts avian voiced sound production

bioRxiv, ISSN: 2692-8205
2019
  • 0
    Citations
  • 0
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Article Description

Voiced sound production is the primary form of acoustic communication in terrestrial vertebrates, particularly birds and mammals, including humans. Developing a causal physics-based model that links descending vocal motor control to tissue vibration and sound requires embodied approaches that include realistic representations of voice physiology. Here we first implement and then experimentally test a high-fidelity three-dimensional continuum model for voiced sound production in birds. Driven by individual-based physiologically quantifiable inputs, combined with non-invasive inverse methods for tissue material parameterization, our model accurately predicts observed key vibratory and acoustic performance traits. These results demonstrate that realistic models lead to accurate predictions and support the continuum model approach as a critical tool towards a causal model of motor control of voiced sound production.

Bibliographic Details

Jiang, W.; Rasmussen, J.H.; Xue, Q.; Ding, M.; Zheng, X.; Elemans, C.P.H.

Cold Spring Harbor Laboratory

Biochemistry, Genetics and Molecular Biology; Agricultural and Biological Sciences; Immunology and Microbiology; Neuroscience; Pharmacology, Toxicology and Pharmaceutics

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know