Structural characterization of an intermediate reveals a unified mechanism for the CLC Cl-/H transport cycle
bioRxiv, ISSN: 2692-8205
2019
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures6
- Readers6
Article Description
Among coupled exchangers, CLCs uniquely catalyze the exchange of oppositely charged ions (Cl for H). Transport-cycle models to describe and explain this unusual mechanism have been proposed based on known CLC structures. While the proposed models harmonize many experimental findings, there have remained gaps and inconsistencies in our understanding. One limitation has been that global conformational change - which occurs in all conventional transporter mechanisms - has not been observed in any high-resolution structure. Here, we describe the 2.6 Å structure of a CLC mutant designed to mimic the fully H-loaded transporter. This structure reveals a global conformational change to a state that has improved accessibility for the Cl- substrate from the extracellular side and new conformations for two key glutamate residues. Based on this new structure, together with DEER measurements, MD simulations, and functional studies, we propose a unified model of the CLC transport mechanism that reconciles existing data on all CLC-type proteins.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know