Regulation of multimers via truncated isoforms: A novel mechanism to control nitric-oxide signaling
Genes and Development, ISSN: 0890-9369, Vol: 18, Issue: 15, Page: 1812-1823
2004
- 32Citations
- 32Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations32
- Citation Indexes32
- 32
- CrossRef23
- Captures32
- Readers32
- 32
Article Description
Nitric oxide (NO) is an essential regulator of Drosophila development and physiology. We describe a novel mode of regulation of NO synthase (NOS) function that uses endogenously produced truncated protein isoforms of Drosophila NOS (DNOS). These isoforms inhibit NOS enzymatic activity in vitro and in vivo, reflecting their ability to form complexes with the full-length DNOS protein (DNOS1). Truncated isoforms suppress the antiproliferative action of DNOS1 in the eye imaginal disc by impacting the retinoblastoma-dependent pathway, yielding hyperproliferative phenotypes in pupae and adult flies. Our results indicate that endogenous products of the dNOS locus act as dominant negative regulators of NOS activity during Drosophila development.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=3543080345&origin=inward; http://dx.doi.org/10.1101/gad.298004; http://www.ncbi.nlm.nih.gov/pubmed/15256486; http://genesdev.cshlp.org/lookup/doi/10.1101/gad.298004; https://dx.doi.org/10.1101/gad.298004; https://genesdev.cshlp.org/content/18/15/1812
Cold Spring Harbor Laboratory
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know