Hopping-Induced Ground-State Magnetism in 6H Perovskite Iridates
Physical Review Letters, ISSN: 1079-7114, Vol: 123, Issue: 1, Page: 017201
2019
- 21Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Investigation of elementary excitations has advanced our understanding of many-body physics governing most physical properties of matter. Recently spin-orbit excitons have drawn much attention, whose condensates near phase transitions exhibit Higgs mode oscillations, a long-sought-after physical phenomenon [A. Jain, et al., Nat. Phys. 13, 633 (2017)NPAHAX1745-247310.1038/nphys4077]. These critical transition points, resulting from competing spin-orbit coupling (SOC), local crystalline symmetry, and exchange interactions, are not obvious in iridium-based materials, where SOC prevails in general. Here, we present results of resonant inelastic x-ray scattering on a spin-orbital liquid Ba3ZnIr2O9 and three other 6H-hexagonal perovskite iridates that show magnetism, contrary to the nonmagnetic singlet ground state expected due to strong SOC. Our results show that substantial hopping between closely placed Ir5+ ions within Ir2O9 dimers in these 6H iridates modifies spin-orbit coupled states and reduces spin-orbit excitation energies. Here, we are forced to use at least a two-site model to match the excitation spectrum going in-line with the strong intradimer hopping. Apart from SOC, low-energy physics of iridates is thus critically dependent on hopping and may not be ignored even for systems having moderate hopping, where the excitation spectra can be explained using an atomic model. SOC, which is generally found to be 0.4-0.5 eV in iridates, is scaled in effect down to ∼0.26 eV for the 6H systems, sustaining the hope of achieving quantum criticality by tuning Ir-Ir separation.
Bibliographic Details
American Physical Society (APS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know