Operator-Algebraic Renormalization and Wavelets
Physical Review Letters, ISSN: 1079-7114, Vol: 127, Issue: 23, Page: 230601
2021
- 9Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We report on a rigorous operator-algebraic renormalization group scheme and construct the free field with a continuous action of translations as the scaling limit of Hamiltonian lattice systems using wavelet theory. A renormalization group step is determined by the scaling equation identifying lattice observables with the continuum field smeared by compactly supported wavelets. Causality follows from Lieb-Robinson bounds for harmonic lattice systems. The scheme is related with the multiscale entanglement renormalization ansatz and augments the semicontinuum limit of quantum systems.
Bibliographic Details
American Physical Society (APS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know