Atomic and molecular ejection from ion-bombarded reacted single-crystal surfaces. Oxygen on copper(100)
Physical Review B, ISSN: 0163-1829, Vol: 18, Issue: 11, Page: 6000-6010
1978
- 93Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The trajectories of atomic and molecular species ejected from an ion-bombarded reacted single-crystal surface have been calculated using classical dynamics. As a model system, oxygen has been adsorbed in various coverages and site geometries on the (100) face of a copper surface, which is then bombarded by 600-eV Ar+ ions at normal incidence. The oxygen atoms have been placed at near zero (single-atom adsorption), p(2×2) and c(2×2) coverages in an A-top site, a fourfold bridge site, and a twofold bridge site. From the calculated positions and momenta of the ejected adsorbate and substrate atoms, we have identified the important ejection mechanisms, determined relative yields, and determined the factors that influence multimer formation. Of mechanistic interest is that oxygen is most often ejected by collisions with an adjacent copper atom rather than by collisions with the copper atom directly beneath it. The calculations show that multimers of the types Cu2, CuO, O2, Cu3, CuO2, O3, and several tetramers and pentamers can be expected to form. These multimers establish their identity over the surface and do not directly eject as a molecular entity. The influence of site geometry on multimer yields is discussed in detail. In general, the bridge sites have higher multimer yields than the A-top site. The surface coverage also exerts a systematic influence on the types of clusters that are observed. For example, molecules like O2 and CuO2 are not likely to be ejected from a p(2×2) surface due to a large O-O separation distance. © 1978 The American Physical Society.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0001654796&origin=inward; http://dx.doi.org/10.1103/physrevb.18.6000; https://link.aps.org/doi/10.1103/PhysRevB.18.6000; http://harvest.aps.org/v2/journals/articles/10.1103/PhysRevB.18.6000/fulltext; http://link.aps.org/article/10.1103/PhysRevB.18.6000
American Physical Society (APS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know