PlumX Metrics
Embed PlumX Metrics

Experimental E(k→) dispersions for the Zn 3d states: Evidence for itinerant character

Physical Review B, ISSN: 0163-1829, Vol: 22, Issue: 10, Page: 4604-4609
1980
  • 55
    Citations
  • 0
    Usage
  • 3
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    55
    • Citation Indexes
      55
  • Captures
    3

Article Description

Using angle-resolved photoemission from Zn (0001) we observe that the Zn 3d states exhibit energy-band dispersion (0.17 eV from Γ6+ to Γ5- for the upper d band) and k-dependent polarization selection rules. The d bands are centered at 10 eV below the Fermi energy EF and are 1.0 eV wide (Γ4- to Γ5-). In contrast, ab initio band calculations using a Hedin-Lundqvist potential yield d bands centered at ∼8.3 eV below EF that are 1.5 eV wide and disperse by 0.33 eV, thus indicating the significance of self-energy corrections for these deep-lying narrow bands. Upon empirically correcting the d-band position by adjusting the exchange parameter α in a nonrelativistic Xα calculation, the calculated bandwidth (1.0 eV) and dispersion are also in agreement with experiment. Experimental critical points are (energies relative to EF): Γ5-=-9.60 eV, Γ6+=-9.77 eV, Γ6-=-10.05 eV, - 10.30 eV, Γ5+=-10.05 eV, - 10.31 eV, Γ4-=-10.62 eV. The observed initial-state lifetime broadening (full width of half maximum) is 0.3 eV at the top of the d bands and 0.5 eV at the bottom of the d bands. © 1980 The American Physical Society.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know