PlumX Metrics
Embed PlumX Metrics

Electric-field-induced Raman scattering: Resonance, temperature, and screening effects

Physical Review B, ISSN: 0163-1829, Vol: 34, Issue: 6, Page: 4017-4025
1986
  • 36
    Citations
  • 0
    Usage
  • 5
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

A comprehensive, experimental characterization of electric-field-induced Raman scattering (EFIRS), a method to probe electric fields within a semiconductor depletion region, is given. Resonance effects, screening of the depletion region by photoexcited carriers, and the influence of temperature on the Raman signal of the symmetry-forbidden, electric-field-dependent LO phonon are discussed for the case of cleaved n-type GaAs surfaces. By comparing results from biased Schottky devices with those from adsorbate-covered surfaces, which were cleaved in ultrahigh vacuum, it is shown that the theoretically expected linear relation between the LO-phonon Raman signal and the Schottky-barrier height holds for the whole range of adsorbate-related potential barriers. In extreme resonance, higher-order effects can affect this relation drastically. However, choosing appropriate power densities of the exciting laser source leads to a partial screening of the space-charge layer by photoexcited carriers, which strongly attenuates these nonlinear effects. Hence a relatively simple calibration of the Raman signals in terms of absolute barrier heights becomes possible by using well-established Schottky-barrier heights as a calibration standard. © 1986 The American Physical Society.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know