Giant magnetoresistance of copper/permalloy multilayers
Physical Review B - Condensed Matter and Materials Physics, ISSN: 1550-235X, Vol: 58, Issue: 18, Page: 12230-12236
1998
- 36Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Current perpendicular (CPP) and current in-plane (CIP) magnetoresistances (MR) have been measured on sputtered Cu/Py (Py=Permalloy) multilayers at 4.2 K. The CPP-MR is several times larger than the CIP-MR. For fixed Py layer thickness, (Formula presented) nm, both the CPP and CIP MRșs show oscillations with increasing (Formula presented) with a period similar to that previously reported for the CIP-MR. The CPP data for Cu thicknesses large enough that exchange interactions between Py layers are small are analyzed using the two spin-current model for both infinite and finite spin-diffusion length in Py. The very low coercive field of Py leads to a larger than usual uncertainty in the derived parameters, because of the uncertainty in the degree of antiparallel alignment required for the analysis. Three alternative analyses give bulk and interface spin-dependent anisotropy parameters, β, and γ, of comparable size, so that both must be considered in determining the CPP-MR. Our preferred values, based upon an assumed (Formula presented) nm, are β=0.65±0.1 and γ=0.76±0.1. These values produce good fits to the CPP-MRșs of Co/Cu/Py/Cu multilayers. © 1998 The American Physical Society.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0000556917&origin=inward; http://dx.doi.org/10.1103/physrevb.58.12230; https://link.aps.org/doi/10.1103/PhysRevB.58.12230; http://harvest.aps.org/v2/journals/articles/10.1103/PhysRevB.58.12230/fulltext; http://link.aps.org/article/10.1103/PhysRevB.58.12230
American Physical Society (APS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know