Structure and melting of Bi nanocrystals embedded in a (formula presented) glass
Physical Review B - Condensed Matter and Materials Physics, ISSN: 1550-235X, Vol: 65, Issue: 13, Page: 1-6
2002
- 29Citations
- 18Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A composite material consisting of spherical Bi nanoclusters (nanocrystals and/or liquid nanodroplets) embedded in a (formula presented) glass was studied by the wide-angle x-ray scattering (WAXS) and small-angle x-ray scattering (SAXS) techniques over the temperature range in which the Bi crystal-liquid transition occurs. Because of the wide radius distribution of Bi clusters and due to the dependence of the melting temperature on crystal radius, the overall transition occurs over a wide range, from 365 up to 464 K. In this transition range, large Bi nanocrystals coexist with small liquid droplets. A weak contraction in a and c lattice parameters of rhombohedral Bi nanocrystals with respect to the bulk crystal was detected. As expected, the average radius of crystalline Bi clusters, deduced from WAXS data, increases for increasing temperatures over the whole solid-to-liquid transition range. The SAXS spectrum recorded at different temperatures within the transition range is essentially invariant, indicating that the radius distribution of Bi nanoclusters (nanocrystals and nanodroplets) is temperature independent. The volume distribution of Bi nanoclusters is a single-mode function with the radius ranging from about 15 up to 41 Å with a maximum at 28 Å. The integral of Bragg peaks of Bi nanocrystals decreases for increasing temperatures as a consequence of the progressive melting of nanocrystals of increasing size. By combining the results of WAXS and SAXS experiments, we determined the melting temperature of the nanocrystals as a function their radius suppressing unwanted size dispersion effects. Our results clearly indicate a linear dependence of the melting temperature on nanocrystal reciprocal radius, thus confirming previous theoretical predictions. © 2002 The American Physical Society.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85038275970&origin=inward; http://dx.doi.org/10.1103/physrevb.65.134204; https://link.aps.org/doi/10.1103/PhysRevB.65.134204; http://harvest.aps.org/v2/journals/articles/10.1103/PhysRevB.65.134204/fulltext; http://link.aps.org/article/10.1103/PhysRevB.65.134204
American Physical Society (APS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know