Oscillatory periodic pattern dynamics in hyperbolic reaction-advection-diffusion models
Physical Review E, ISSN: 2470-0053, Vol: 105, Issue: 3, Page: 034206
2022
- 17Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this work we consider a quite general class of two-species hyperbolic reaction-advection-diffusion system with the main aim of elucidating the role played by inertial effects in the dynamics of oscillatory periodic patterns. To this aim, first, we use linear stability analysis techniques to deduce the conditions under which wave (or oscillatory Turing) instability takes place. Then, we apply multiple-scale weakly nonlinear analysis to determine the equation which rules the spatiotemporal evolution of pattern amplitude close to criticality. This investigation leads to a cubic complex Ginzburg-Landau (CCGL) equation which, owing to the functional dependence of the coefficients here involved on the inertial times, reveals some intriguing consequences. To show in detail the richness of such a scenario, we present, as an illustrative example, the pattern dynamics occurring in the hyperbolic generalization of the extended Klausmeier model. This is a simple two-species model used to describe the migration of vegetation stripes along the hillslope of semiarid environments. By means of a thorough comparison between analytical predictions and numerical simulations, we show that inertia, apart from enlarging the region of the parameter plane where wave instability occurs, may also modulate the key features of the coherent structures, solution of the CCGL equation. In particular, it is proven that inertial effects play a role, not only during transient regime from the spatially-homogeneous steady state toward the patterned state, but also in altering the amplitude, the wavelength, the angular frequency, and even the stability of the phase-winding solutions.
Bibliographic Details
American Physical Society (APS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know