PlumX Metrics
Embed PlumX Metrics

Comparative study of an Eden model for the irreversible growth of spins and the equilibrium Ising model

Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, ISSN: 1063-651X, Vol: 63, Issue: 6, Page: 066127
2001
  • 21
    Citations
  • 0
    Usage
  • 2
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The magnetic Eden model (MEM) [N. Vandewalle and M. Ausloos, Phys. Rev. E 50, R635 (1994)] with ferromagnetic interactions between nearest-neighbor spins is studied in (d+1)-dimensional rectangular geometries for [formula presented] In the MEM, magnetic clusters are grown by adding spins at the boundaries of the clusters. The orientation of the added spins depends on both the energetic interaction with already deposited spins and the temperature, through a Boltzmann factor. A numerical Monte Carlo investigation of the MEM has been performed and the results of the simulations have been analyzed using finite-size scaling arguments. As in the case of the Ising model, the MEM in [formula presented] is noncritical (only exhibits an ordered phase at [formula presented] In [formula presented] the MEM exhibits an order-disorder transition of second order at a finite temperature. Such transition has been characterized in detail and the relevant critical exponents have been determined. These exponents are in agreement (within error bars) with those of the Ising model in two dimensions. Further similarities between both models have been found by evaluating the probability distribution of the order parameter, the magnetization, and the susceptibility. Results obtained by means of extensive computer simulations allow us to put forward a conjecture that establishes a nontrivial correspondence between the MEM for the irreversible growth of spins and the equilibrium Ising model. This conjecture is certainly a theoretical challenge and its confirmation will contribute to the development of a framework for the study of irreversible growth processes. © 2001 The American Physical Society.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know