Reconstructing the inflaton potential - An overview
Reviews of Modern Physics, ISSN: 0034-6861, Vol: 69, Issue: 2, Page: 373-410
1997
- 744Citations
- 110Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
The authors review the relation between the inflationary potential and the spectra of density waves (scalar perturbations) and gravitational waves (tensor perturbations) produced, with particular emphasis on the possibility of reconstructing the inflaton potential from observations. The spectra provide a potentially powerful test of the inflationary hypothesis; they are not independent but instead are linked by consistency relations reflecting their origin from a single inflationary potential. To lowest order in a perturbation expansion there is a single, now familiar, relation between the tensor spectral index and the relative amplitude of the spectra. The authors demonstrate that there is an infinite hierarchy of such consistency equations, though observational difficulties suggest only the first is ever likely to be useful. They also note that since observations are expected to yield much better information on the scalars than on the tensors, it is likely to be the next-order version of this consistency equation that will be appropriate, not the lowest-order one. If inflation passes the consistency test, one can then confidently use the remaining observational information to constrain the inflationary potential, and the authors survey the general perturbative scheme for carrying out this procedure. Explicit expressions valid to next-lowest order in the expansion are presented. The prospects for future observations' reaching the quality required are then briefly assessed and simulated data sets motivated by this outlook are considered.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0031478046&origin=inward; http://dx.doi.org/10.1103/revmodphys.69.373; https://link.aps.org/doi/10.1103/RevModPhys.69.373; http://harvest.aps.org/v2/journals/articles/10.1103/RevModPhys.69.373/fulltext; http://link.aps.org/article/10.1103/RevModPhys.69.373
American Physical Society (APS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know