PlumX Metrics
Embed PlumX Metrics

Growth in elevated CO can both increase and decrease photochemistry and photoinhibition of photosynthesis in a predictable manner. Dactylis glomerata grown in two levels of nitrogen nutrition

Plant Physiology, ISSN: 0032-0889, Vol: 127, Issue: 3, Page: 1204-1211
2001
  • 91
    Citations
  • 0
    Usage
  • 67
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    91
    • Citation Indexes
      90
    • Policy Citations
      1
      • Policy Citation
        1
  • Captures
    67
  • Mentions
    1
    • News Mentions
      1
      • News
        1

Most Recent News

Do elevated C[O.sub.2] and temperature affect organic nitrogen fractions and enzyme activities in soil under rice crop?(Report)

Introduction Atmospheric carbon dioxide (C[O.sub.2]) concentration has increased from 280 ppm, during the pre-industrial period, to 400 ppm at present (Dlugokencky and Pieter 2015). The

Article Description

Biochemically based models of C photosynthesis can be used to predict that when photosynthesis is limited by the amount of Rubisco, increasing atmospheric CO partial pressure (pCO) will increase light-saturated linear electron flow through photosystem II (J). This is because the stimulation of electron flow to the photosynthetic carbon reduction cycle (J) will be greater than the competitive suppression of electron flow to the photorespiratory carbon oxidation cycle (J). Where elevated pCO increases J, then the ratio of absorbed energy dissipated photochemically to that dissipated non-photochemically will rise. These predictions were tested on Dactylis glomerata grown in fully controlled environments, at either ambient (35 Pa) or elevated (65 Pa) pCO, and at two levels of nitrogen nutrition. As was predicted, for D. glomerata grown in high nitrogen, J was significantly higher in plants grown and measured at elevated pCO than for plants grown and measured at ambient pCO. This was due to a significant increase in J exceeding any suppression of J. This increase in photochemistry at elevated pCO protected against photoinhibition at high light. For plants grown at low nitrogen, J was significantly lower in plants grown and measured at elevated pCO than for plants grown and measured at ambient pCO. Elevated pCO again suppressed J; however growth in elevated pCO resulted in an acclimatory decrease in leaf Rubisco content that removed any stimulation of J. Consistent with decreased photochemistry, for leaves grown at low nitrogen, the recovery from a 3-h photoinhibitory treatment was slower at elevated pCO.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know