Functions of multiple genes encoding ADP-glucose pyrophosphorylase subunits in maize endosperm, embryo, and leaf
Plant Physiology, ISSN: 1532-2548, Vol: 164, Issue: 2, Page: 596-611
2014
- 69Citations
- 75Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations69
- Citation Indexes69
- 69
- CrossRef44
- Captures75
- Readers75
- 75
Article Description
ADP-glucose pyrophosphorylase (AGPase) provides the nucleotide sugar ADP-glucose and thus constitutes the first step in starch biosynthesis. The majority of cereal endosperm AGPase is located in the cytosol with a minor portion in amyloplasts, in contrast to its strictly plastidial location in other species and tissues. To investigate the potential functions of plastidial AGPase in maize (Zea mays) endosperm, six genes encoding AGPase large or small subunits were characterized for gene expression as well as subcellular location and biochemical activity of the encoded proteins. Seven transcripts from these genes accumulate in endosperm, including those from shrunken2 and brittle2 that encode cytosolic AGPase and five candidates that could encode subunits of the plastidial enzyme. The amino termini of these five polypeptides directed the transport of a reporter protein into chloroplasts of leaf protoplasts. All seven proteins exhibited AGPase activity when coexpressed in Escherichia coli with partner subunits. Null mutations were identified in the genes agpsemzm and agpllzm and shown to cause reduced AGPase activity in specific tissues. The functioning of these two genes was necessary for the accumulation of normal starch levels in embryo and leaf, respectively. Remnant starch was observed in both instances, indicating that additional genes encode AGPase large and small subunits in embryo and leaf. Endosperm starch was decreased by approximately 7% in agpsemzm- or agpllzm- mutants, demonstrating that plastidial AGPase activity contributes to starch production in this tissue even when the major cytosolic activity is present. © 2014 American Society of Plant Biologists. All rights reserved.
Bibliographic Details
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know