Nanostructured copper-carbon nanotubes composites for aircraft applications
Aircraft Engineering and Aerospace Technology, ISSN: 1748-8842, Vol: 90, Issue: 7, Page: 1042-1049
2018
- 2Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Purpose: The reliable performance of critical components working under extreme conditions is paramount to the safe operation of aircraft, and material selection is critical. Copper alloys are an obvious choice for such applications whenever a combination of transport, mechanical and tribological properties is required. However, low strength and hardness issues require development of new copper alloys and composites to improve service life and reliability. This study aims to investigate the effect of carbon nanotubes as reinforcement phase in copper-matrix composites. Design/methodology/approach: The development of novel copper-based composites refined to the nanoscale was envisaged through mechanical milling of mixtures containing copper and carbon nanotubes (2 Wt.%). Milling took place in a planetary ball mill for times varying between 1 h and 16 h at 400 rpm. A ball-to-powder ratio of 20:1 and alumina vial and copper spheres were used under dry conditions or with addition of isopropyl alcohol. Scanning electron microscopy/energy dispersive spectroscopy, size distribution, Raman spectroscopy and X-ray diffraction were used to study the produced powders. Findings: Attained results show that mechanical milling of the studied system produces nanostructured powders containing second-phase carbon nanotubes homogeneously distributed in the metallic matrix, together with severe copper grain refinement. This should correspond to increased residual microstresses, envisaging significant improvement of mechanical properties of the produced copper composites. Originality/value: The novelty of the work resides in the use of carbon nanotubes for the reinforcement of copper, and on the systematic microstructural characterisation of the produced composites.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85132130756&origin=inward; http://dx.doi.org/10.1108/aeat-01-2017-0016; https://www.emerald.com/insight/content/doi/10.1108/AEAT-01-2017-0016/full/html; https://www.emerald.com/insight/content/doi/10.1108/AEAT-01-2017-0016/full/xml; https://dx.doi.org/10.1108/aeat-01-2017-0016; https://www.emerald.com/insight/content/doi/10.1108/aeat-01-2017-0016/full/html
Emerald
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know