Machine learning-aided cost prediction and optimization in construction operations
Engineering, Construction and Architectural Management, ISSN: 0969-9988, Vol: 29, Issue: 3, Page: 1241-1257
2022
- 15Citations
- 72Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Purpose: This paper aims to use a data-driven approach towards optimizing construction operations. To this extent, it presents a machine learning (ML)-aided optimization approach, wherein the construction cost is predicted as a function of time, resources and environmental impact, which is further used as a surrogate model for cost optimization. Design/methodology/approach: Taking a dataset from literature, the paper has applied various ML algorithms, namely, simple and regularized linear regression, random forest, gradient boosted trees, neural network and Gaussian process regression (GPR) to predict the construction cost as a function of time, resources and environmental impact. Further, the trained models were used to optimize the construction cost applying single-objective (with and without constraints) and multi-objective optimizations, employing Bayesian optimization, particle swarm optimization (PSO) and non-dominated sorted genetic algorithm. Findings: The results presented in the paper demonstrate that the ensemble methods, such as gradient boosted trees, exhibit the best performance for construction cost prediction. Further, it shows that multi-objective optimization can be used to develop a Pareto front for two competing variables, such as cost and environmental impact, which directly allows a practitioner to make a rational decision. Research limitations/implications: Note that the sequential nature of events which dictates the scheduling is not considered in the present work. This aspect could be incorporated in the future to develop a robust scheme that can optimize the scheduling dynamically. Originality/value: The paper demonstrates that a ML approach coupled with optimization could enable the development of an efficient and economic strategy to plan the construction operations.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know