The porous media theory applied to radiofrequency catheter ablation
International Journal of Numerical Methods for Heat and Fluid Flow, ISSN: 0961-5539, Vol: 30, Issue: 5, Page: 2669-2681
2020
- 22Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Purpose: Recently, the porous media theory has been successively proposed for many bioengineering applications. The purpose of this paper is to analyze if the porous media theory can be applied to model radiofrequency (RF) cardiac ablation. Design/methodology/approach: Blood flow, catheter and tissue are modeled. The latter is further divided into a fluid and a solid phase, and porous media equations are used to model them. The heat source term is modeled using the Laplace equation, and the finite element method is used to solve the governing equations under the appropriate boundary conditions and closure coefficients. Findings: After validation with available literature data, results are shown for different velocities and applied voltages to understand how these parameters affect temperature fields (and necrotic regions). Research limitations/implications: The model might require further validation with experiments under different conditions after comparisons with available literature. However, this might not be possible due to the experimental complexity. Practical implications: The improvement in predictions from the model might help the final user, i.e. the surgeon, who uses cardiac ablation to treat arrhythmia. Originality/value: This is the first time that the porous media theory is applied to RF cardiac ablation. The robustness of the model, in which many variables are taken into account, makes it suitable to better predict temperature fields, and damaged regions, during RF cardiac ablation treatments.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know