Analysis of barriers intensity for investment in big data analytics for sustainable manufacturing operations in post-COVID-19 pandemic era
Journal of Enterprise Information Management, ISSN: 1741-0398, Vol: 35, Issue: 1, Page: 179-213
2022
- 25Citations
- 176Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Purpose: The study presents various barriers to adopt big data analytics (BDA) for sustainable manufacturing operations (SMOs) post-coronavirus disease (COVID-19) pandemics. In this study, 17 barriers are identified through extensive literature review and experts’ opinions for investing in BDA implementation. A questionnaire-based survey is conducted to collect responses from experts. The identified barriers are grouped into three categories with the help of factor analysis. These are organizational barriers, data management barriers and human barriers. For the quantification of barriers, the graph theory matrix approach (GTMA) is applied. Design/methodology/approach: The study presents various barriers to adopt BDA for the SMOs post-COVID-19 pandemic. In this study, 17 barriers are identified through extensive literature review and experts’ opinions for investing in BDA implementation. A questionnaire-based survey is conducted to collect responses from experts. The identified barriers are grouped into three categories with the help of factor analysis. These are organizational barriers, data management barriers and human barriers. For the quantification of barriers, the GTMA is applied. Findings: The study identifies barriers to investment in BDA implementation. It categorizes the barriers based on factor analysis and computes the intensity for each category of a barrier for BDA investment for SMOs. It is observed that the organizational barriers have the highest intensity whereas the human barriers have the smallest intensity. Practical implications: This study may help organizations to take strategic decisions for investing in BDA applications for achieving one of the sustainable development goals. Organizations should prioritize their efforts first to counter the barriers under the category of organizational barriers followed by barriers in data management and human barriers. Originality/value: The novelty of this paper is that barriers to BDA investment for SMOs in the context of Indian manufacturing organizations have been analyzed. The findings of the study will assist the professionals and practitioners in formulating policies based on the actual nature and intensity of the barriers.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85116157690&origin=inward; http://dx.doi.org/10.1108/jeim-03-2021-0154; https://www.emerald.com/insight/content/doi/10.1108/JEIM-03-2021-0154/full/html; https://dx.doi.org/10.1108/jeim-03-2021-0154; https://www.emerald.com/insight/content/doi/10.1108/jeim-03-2021-0154/full/html
Emerald
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know