Using health belief model and social media analytics to develop insights from hospital-generated twitter messaging and community responses on the COVID-19 pandemic
Journal of Enterprise Information Management, ISSN: 1741-0398, Vol: 36, Issue: 6, Page: 1483-1507
2023
- 2Citations
- 21Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Purpose: This study aims to examine how different hospitals utilize social media to communicate risk information about COVID-19 with the communities they serve, and how hospitals' social media messaging (firm-generated content and their local community's responses (user-generated content) evolved with the COVID-19 outbreak progression. Design/methodology/approach: This research proposes a healthcare-specific social media analytics framework and studied 68,136 tweets posted from November 2019 to November 2020 from a geographically diverse set of ten leading hospitals' social media messaging on COVID-19 and the public responses by using social media analytics techniques and the health belief model (HBM). Findings: The study found correlations between some of the HBM variables and COVID-19 outbreak progression. The findings provide actionable insight for hospitals regarding risk communication, decision making, pandemic awareness and education campaigns and social media messaging strategy during a pandemic and help the public to be more prepared for information seeking in the case of future pandemics. Practical implications: For hospitals, the results provide valuable insights for risk communication practitioners and inform the way hospitals or health agencies manage crisis communication during the pandemic For patients and local community members, they are recommended to check out local hospital's social media sites for updates and advice. Originality/value: The study demonstrates the role of social media analytics and health behavior models, such as the HBM, in identifying important and useful data and knowledge for public health risk communication, emergency responses and planning during a pandemic.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know