Testing the convergence and the divergence in five Asian countries: from a GMM model to a new Machine Learning algorithm
Journal of Economic Studies, ISSN: 0144-3585, Vol: 49, Issue: 6, Page: 1002-1016
2022
- 9Citations
- 57Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Purpose: The purpose of this paper is to empirically test the economic convergence that operate between five selected Asian countries (namely Thailand, Singapore, Malaysia, the Philippines and Indonesia). In particular, it seeks to investigate how increased economic integration has impacted the inter-country income levels among the five founding members of ASEAN. Design/methodology/approach: A new Machine Learning (ML) approach is applied along with a panel data analysis (GMM), and the application of KOF Globalization Index. Findings: The Generalized Method of Moments (GMM) results highlight that the endogenous growth theory seems to be supported for the selected Asian countries, indicating evidence of diverging forces resulting from unequal growth and polarization dynamics. Overcoming the technical issues raised by the econometric approach, the new ML algorithm brings contrasted but interesting results. Using the KOF Globalization Index, the authors confirm how the last phase of globalization set the conditions for an economic convergence among sample members. Originality/value: Using the KOF Globalization Index, the authors confirm how the last phase of globalization set the conditions for an economic convergence among sample members. As a matter of fact, the new LSTM algorithm has provided consistent evidence supporting the existence of converging forces. In fact, the results highlighted the effectiveness of the experiments and the algorithm we chose. The high predictability of the authors’ model and the absence of self-alignment in the values showed a convergence be-tween the economies.
Bibliographic Details
Emerald
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know