PlumX Metrics
Embed PlumX Metrics

Voice activity detection using optimal window overlapping especially over health-care infrastructure

World Journal of Engineering, ISSN: 1708-5284, Vol: 19, Issue: 1, Page: 118-123
2022
  • 6
    Citations
  • 0
    Usage
  • 4
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Purpose: This paper aims to introduce recently an unregulated unsupervised algorithm focused on voice activity detection by data clustering maximum margin, i.e. support vector machine. The algorithm for clustering K-mean used to solve speech behaviour detection issues was later applied, the application, therefore, did not permit the identification of voice detection. This is critical in demands for speech recognition. Design/methodology/approach: Here, the authors find a voice activity detection detector based on a report provided by a K-mean algorithm that permits sliding window detection of voice and noise. However, first, it needs an initial detection pause. The machine initialized by the algorithm will work on health-care infrastructure and provides a platform for health-care professionals to detect the clear voice of patients. Findings: Timely usage discussion on many histories of NOISEX-92 var reveals the average non-speech and the average signal-to-noise ratios hit concentrations which are higher than modern voice activity detection. Originality/value: Research work is original.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know