Extending Embedding Representation by Incorporating Latent Relations
IEEE Access, ISSN: 2169-3536, Vol: 6, Page: 52682-52690
2018
- 3Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The semantic representation of words is a fundamental task in natural language processing and text mining. Learning word embedding has shown its power on various tasks. Most studies are aimed at generating embedding representation of a word based on encoding its context information. However, many latent relations, such as co-occurring associative patterns and semantic conceptual relations, are not well considered. In this paper, we propose an extensible model to incorporate these kinds of valuable latent relations to increase the semantic relatedness of word pairs by learning word embeddings. To assess the effectiveness of our model, we conduct experiments on both information retrieval and text classification tasks. The results indicate the effectiveness of our model as well as its flexibility on different tasks.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know