Maintaining population diversity in brain storm optimization algorithm
Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014, Page: 3230-3237
2014
- 47Citations
- 21Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Swarm intelligence suffers the premature convergence, which happens partially due to the solutions getting clustered together, and not diverging again. The brain storm optimization (BSO), which is a young and promising algorithm in swarm intelligence, is based on the collective behavior of human being, that is, the brainstorming process. Premature convergence also happens in the BSO algorithm. The solutions get clustered after a few iterations, which indicate that the population diversity decreases quickly during the search. A definition of population diversity in BSO algorithm to measure the change of solutions' distribution is proposed in this paper. The algorithm's exploration and exploitation ability can be measured based on the change of population diversity. Two kinds of partial re-initialization strategies are utilized to improve the population diversity in BSO algorithm. The experimental results show that the performance of the BSO is improved by these two strategies.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84908577883&origin=inward; http://dx.doi.org/10.1109/cec.2014.6900255; http://ieeexplore.ieee.org/document/6900255/; http://xplorestaging.ieee.org/ielx7/6880677/6900223/06900255.pdf?arnumber=6900255; https://doi.org/10.1109%2Fcec.2014.6900255
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know