Trends in on-chip dynamic resource management
Proceedings - 21st Euromicro Conference on Digital System Design, DSD 2018, Page: 62-69
2018
- 5Citations
- 26Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
The Complexity of emerging multi/many-core architectures and diversity of modern workloads demands coordinated dynamic resource management methods. We introduce a classification for these methods capturing the utilized resources and metrics. In this work, we use this classification to survey the key efforts in dynamic resource management. We first cover heuristic and optimization methods used to manage resources such as power, energy, temperature, Quality-of-Service (QoS) and reliability of the system. We then identify some of the machine learning based methods used in tuning architectural parameters in computer systems. In many cases, resource managers need to enforce design constraints during runtime with a certain level of guarantee. Hence, we also study the trend in deploying formal control theoretic approaches in order to achieve efficient and robust dynamic resource management.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know