Reliability of Short-Term Heart Rate Variability Indexes Assessed through Photoplethysmography
Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, ISSN: 1557-170X, Vol: 2018, Page: 5610-5513
2018
- 27Citations
- 34Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations27
- Citation Indexes27
- 27
- CrossRef8
- Captures34
- Readers34
- 34
Article Description
The gold standard method to monitor heart rate variability (HRV) comprises measuring the time series of interbeat interval durations from electrocardiographic (ECG) recordings. However, due to the widespread use, simplicity and usability of photoplethysmographic (PPG) techniques, monitoring pulse rate variability (PRV) from pulse wave recordings has become a viable alternative to standard HRV analysis. The present study investigates the accuracy of PRV, measured as a surrogate of HRV, for the quantification of descriptive indexes computed in the time domain (mean, variance), frequency domain (low-to-high frequency power ratio LF/HF, HF band central frequency) and information domain (entropy, conditional entropy). We analyze short time series (300 intervals) of HRV measured from the ECG and of PRV acquired from Finometer device in 76 subjects monitored in the resting supine position (SU) and in the upright position during head-up tilt (HUT). Time, frequency and information domain indexes are computed for each HRV and PRV series and, for each index, the comparison between the two approaches is performed through statistical comparison of the distributions across subjects, robust linear regression, and Bland-Altman plots. Results of the comparison indicate an overall good agreement between PRV-based and HRV-based indexes, with an accuracy that is slightly lower during HUT than during SU, and for the band-power ratio and conditional entropy. These results suggest the feasibility of PRV-based assessment of HRV descriptive indexes, and suggest to further investigate the agreement in conditions of physiological stress.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know