SmartLeg: An intelligent active robotic prosthesis for lower-limb amputees
2011 23rd International Symposium on Information, Communication and Automation Technologies, ICAT 2011, Page: 1-7
2011
- 13Citations
- 60Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
In recent years, there has been a worldwide interest in improvement of mobility of people with lower limb amputation. In spite of significant development of new technologies during the last decade, commercial below-knee and above-knee prostheses are still energetically passive devices. However, many locomotive functions, like walking up stairs and slopes, need significant power in knee and ankle joints. The additional power for doing previously mentioned activities needs to be achieved by means of external energy sources, which should be integral prosthetic components. This paper presents preliminary investigations towards an active robotic prosthesis that could potentially enable people with an above- or below-knee amputation to perform different types of motions that require power in lower limb joints. Our initial prototype, SmartLeg, integrates advanced prosthetic and robotic technology with the state-of-the-art machine learning algorithms capable of adapting the working of the prosthesis to the optimal gait and power consumption patterns, and which therefore provide means to customize the device to a particular user. © 2011 IEEE.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know