Multi-example search in rich information graphs
Proceedings - IEEE 34th International Conference on Data Engineering, ICDE 2018, Page: 809-820
2018
- 17Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
In rich information spaces, it is often hard for users to formally specify the characteristics of the desired answers, either due to the complexity of the schema or of the query language, or even because they do not know exactly what they are looking for. Exemplar queries constitute a query paradigm that overcomes those problems, by allowing users to provide examples of the elements of interest in place of the query specification. In this paper, we propose a general approach where the user-provided example can comprise several partial specification fragments, where each fragment describes only one part of the desired result. We provide a formal definition of the problem, which generalizes existing formulations for both the relational and the graph model. We then describe exact algorithms for its solution for the case of information graphs, as well as top-k algorithms. Experiments on large real datasets demonstrate the effectiveness and efficiency of the proposed approach.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know