Discrete-time velocity control of redundant robots with acceleration/torque optimization properties
Proceedings - IEEE International Conference on Robotics and Automation, ISSN: 1050-4729, Page: 5139-5144
2014
- 7Citations
- 26Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
The paper addresses the following problem for redundant robots. Given a second-order inverse differential scheme that realizes instantaneously a desired task acceleration and has some specified properties in terms of joint acceleration or torque, define a discrete-time joint velocity command that shares the same characteristics under suitable hypotheses. The goal is to obtain simpler implementations of possibly complex robot control laws that i) can be directly interfaced to the low-level servo loops of a robot, ii) require less task information and on-line computations, iii) are still provably good with respect to some target performance. The method is illustrated by considering the conversion into discrete-time velocity commands of control schemes for redundant robots that minimize the (possibly, weighted) norm of joint acceleration or joint torque, or that add null-space damping to overcome floating motion of the robot joints. Numerical results are presented for the kinematic control of a 7R KUKA LWR.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know