ASR normalization for machine translation
Proceedings - 2010 2nd International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2010, Vol: 2, Page: 91-94
2010
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Conference Paper Description
In natural spoken language there are many meaningless modal particles and dittographes, furthermore ASR (automatic speech recognition) often has some recognition errors and the ASR results have no punctuations. Therefore, the translation would be rather poor if the ASR results are directly translated by MT (machine translation). In this paper, an ASR normalization approach was introduced for machine translation which based on maximum entropy sequential labeling model. Before translation, the meaningless modal particles and dittograph were deleted, and the recognition errors were corrected, and ASR results were also punctuated. Experiments show that the MT BLEU of 0.2465 is obtained, that improved by 17.3% over the MT baseline without normalization. The positive experimental results confirm that ASR normalization is effective for improvement of translation quality for spoken language machine translation. © 2010 IEEE.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know