Proportional fair frequency-domain packet scheduling for 3GPP LTE uplink
Proceedings - IEEE INFOCOM, ISSN: 0743-166X, Page: 2611-2615
2009
- 252Citations
- 129Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
With the power consumption issue of mobile handset taken into account, Single-carrier FDMA (SC-FDMA) has been selected for 3GPP Long-Term Evolution (LTE) uplink multiple access scheme. Like in OFDMA downlink, it enables multiple users to be served simultaneously in uplink as well. However, its single carrier property requires that all the subcarriers allocated to a single user must be contiguous in frequency within each time slot. This contiguous allocation constraint limits the scheduling flexibility, and frequency-domain packet scheduling algorithms in such system need to incorporate this constraint while trying to maximize their own scheduling objectives. In this paper we explore this fundamental problem of LTE SC-FDMA uplink scheduling by adopting the conventional time-domain Proportional Fair algorithm to maximize its objective (i.e. proportional fair criteria) in the frequency-domain setting. We show the NP-hardness of the frequency-domain scheduling problem under this contiguous allocation constraint and present a set of practical algorithms fine tuned to this problem. We demonstrate that competitive performance can be achieved in terms of system throughput as well as fairness perspective, which is evaluated using 3GPP LTE system model simulations. © 2009 IEEE.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=70349678389&origin=inward; http://dx.doi.org/10.1109/infcom.2009.5062197; https://ieeexplore.ieee.org/document/5062197/; http://ieeexplore.ieee.org/document/5062197/; http://xplorestaging.ieee.org/ielx5/5061887/5061888/05062197.pdf?arnumber=5062197; https://doi.org/10.1109%2Finfcom.2009.5062197
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know