Real-Time Continuous Locomotion Mode Recognition and Transition Prediction for Human With Lower Limb Exoskeleton
IEEE Journal of Biomedical and Health Informatics, ISSN: 2168-2208, Vol: 29, Issue: 2, Page: 1074-1086
2025
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
Real-time continuous locomotion mode recognition and seamless timely transition detection is critical for the exoskeleton robot. This study aims to present a comprehensive and innovative framework for locomotion mode recognition and transition prediction, exclusively utilizing inertial measurement unit (IMU) signals from the exoskeleton. In this framework, a CNN-BiLSTM model was developed and trained to be the classifier and a novel majority filter was designed to reduce the transition misjudgment rate. Moreover, a comprehensive evaluation system encompassing eight dimensions for the classifier, incorporating evaluation metrics specifically for transition misjudgment, was proposed. We collected locomotion motion data from six subjects wearing a rigid exoskeleton robot using six IMU sensors on the exoskeleton. The proposed method achieves a high level of recognition accuracy, with an overall average of 99.58% for the five steady locomotion modes (level ground walking (LG), stair ascent/descent (SA/SD), and ramp ascent/descent (RA/RD)) across six subjects following the transition decision. All transitions are recognizable, and the majority can be predicted in advance, with an average prediction time of 353 ms. Furthermore, the implementation of majority filter resulted in an average 87.04% reduction in the transition misjudgment rate among six subjects, thereby decreasing the average transition misjudgment rate to 4.82%. Finally, the model was tested on a Jetson Nano to verify its real-time performance. The results presented above were obtained under the condition where either leg could function as the first transition leg and revealed that the developed system was capable of achieving precise locomotion mode recognition and timely transition prediction, with high real-time performance.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know