Enlarging the Usable Hand Tracking Area by Using Multiple Leap Motion Controllers in VR
IEEE Sensors Journal, ISSN: 1558-1748, Vol: 21, Issue: 16, Page: 17947-17961
2021
- 10Citations
- 21Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Leap Motion Controller (LMC) is a widely-used 3D user-interface device for virtual reality (VR) in hand tracking applications. However, the tracking area of a single LMC is not sufficient to cover the complete range of hand motion typically used in virtual reality applications, which can cause inconvenience and unnatural behavior of bare-hand interaction in a cooperated virtual environment. In this paper, we propose fusing the data from multiple LMCs to enlarge the tracking area. We present our shared-view calibration method based on a Least-squares Fitting algorithm. To track two hands in the enlarged tracking area, we propose a multi-targets tracking algorithm based on a Clustering-based Labeled Probability Hypothesis Density filter implemented by Gaussian mixture approach. A hand-recognition confidence is proposed to improve the tracking performance when hands are incorrectly recognized. The performance of the proposed algorithm was evaluated by three tests based on a five-LMCs system used on an Oculus Rift S. Results show that our system can track two hands stably in the range of 202.16 degrees horizontally and 164.43 degrees vertically, and the proposed algorithm shows superiority in tracking robustness under hand-recognition errors. The contribution of this paper is to provide a detailed guide for designing an enlarged hand-tracking system using sensor fusion.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know