Passive Gravity Compensation for Parallel Mechanism with Both Spatial Translations and Angular Orientations
IEEE Robotics and Automation Letters, ISSN: 2377-3766, Vol: 9, Issue: 3, Page: 2279-2286
2024
- 2Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Passive compensation has been proven to be effective in reducing gravitational joint loads and improving the output capability of mechanisms. Existing methods for passive compensation are not satisfactory in terms of mechanism complexity and implementation convenience, while cases with variable angular orientations are more complicated. This letter presents a feasible design to achieve approximate compensation for multi-DOF parallel mechanisms with both translations and orientations. The counterweights employed to provide vertical forces are connected with the moving platform by 2T1R stands and pantographs as external components. Conventional approaches using springs or counterweights in the chains are also calculated for comparisons. By contrast, the proposed method is easy to be realized and possesses strong robustness to orientations. Finally, an experimental prototype is implemented to verify the performance. The results show that the maximum torques and energy consumption are reduced by 49.44% and 78.08% for the translation mechanism, respectively, and by 35.77% and 43.43% for the rotation mechanism.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know