Electrical design considerations for a 40MHZ gas ionization chamber
Proceedings of the IEEE Particle Accelerator Conference, Vol: 2, Page: 1327-1329
2001
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
The front IR quadrupole absorbers (TAS) and the IR neutral particle absorbers (TAN) in the high luminosity insertions of the Large Hadron Collider (LHC) each absorb approximately 1.8 TeV of forward collision products on average per pp interaction (∼235W at design luminosity 10cms). This secondary particle flux can be exploited to provide a useful storage ring operations tool for optimization of luminosity. A novel segmented, multi-gap, pressurized gas ionization chambers is being developed for sampling the energy deposited near the maxima of the hadronic/ electromagnetic showers in these absorbers. The ionization chamber must be capable of resolving individual bunch crossings at 40MHz. The ionization chamber is segmented into quadrants; each quadrant consists of sixty (40×40)mm Cu plates 1.0mm thick, with 0.5mm gaps. The 0.5mm gap width has been chosen so that the time for the ionization electrons to drift across the gap, is short enough to produce at the out put of the shaping amplifier, a signal that returns to the base line is less than the 25ns bunch spacing of the LHC. From noise considerations in the presence of a cable the stack of plates are connected electrically 10 in parallel, 6 in series to achieve an equivalent detector capacitance C∼50pF. This type connection forms an electrode inductive L and electrode capacitive C network that must be optimized to transfer charge from the chamber to the sensing amplifier. This paper describes the design of the collection electrodes optimized for 40 MHz operation.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know