Exploiting Task-Based Parallelism for Parallel Discrete Event Simulation
Proceedings - 26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP 2018, Page: 562-566
2018
- 1Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Today large-scale simulation applications are becoming common in research and industry. A significant fraction of them run on multi-core clusters. Current parallel simulation kernels use multi-process and multi-thread to exploit inter-node parallelism and intra-node parallelism on multi-core clusters. We exploit task-base parallelism in parallel discrete event simulation (PDES) kernels, which is more fine-grained than thread-level and process-level parallelism. In our system, every simulation event is wrapped to a task. Work-stealing task scheduling scheme is applied to achieve dynamic load balancing among the multi-cores, and a graph partitioning approach is applied in partitioning simulation entities among the cluster nodes. Experimental results show that our PDES kernel outperforms existing PDES kernels by fully exploiting task parallelism.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know