Learning high-level manipulative tasks through imitation
Proceedings - IEEE International Workshop on Robot and Human Interactive Communication, Page: 251-256
2006
- 2Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
This paper presents ConSCIS, Conceptual Space based Cognitive Imitation System, which tightly links low-level data processing with knowledge representation in the context of robot imitation. Our focus is on the program-level imitation: we are interested in the final effects of actions on objects, and not on the particular kinematic or dynamic properties of the motion. The same architecture is used both to analyze and represent the task to be imitated, and to perform the imitation by generalizing in novel and different circumstances. The implemented experimental scenario is a two dimensional world populated with various objects in which observation/imitation takes place. To validate our approach, we report some results concerned with the problem of teaching a humanoid hand/arm robotic system tasks of assembling different workspace objects. ©2006 IEEE.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know