Limited pre-emptive global fixed task priority
Proceedings - Real-Time Systems Symposium, ISSN: 1052-8725, Page: 182-191
2013
- 18Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
In this paper a limited pre-emptive global fixed task priority scheduling policy for multiprocessors is presented. This scheduling policy is a generalization of global fully pre-emptive and non-pre-emptive fixed task priority policies for platforms with at least two homogeneous processors. The scheduling protocol devised is such that a job can only be blocked at most once by a body of lower priority non-pre-emptive workload. The presented policy dominates both fully pre-emptive and fully non-pre-emptive with respect to schedulability. A sufficient schedulability test is presented for this policy. Several approaches to estimate the blocking generated by lower priority non-pre-emptive regions are presented. As a last contribution it is experimentally shown that, on the average case, the number of pre-emptions observed in a schedule are drastically reduced in comparison to global fully pre-emptive scheduling. © 2013 IEEE.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know