Track-before-detect algorithms for targets with kinematic constraints
IEEE Transactions on Aerospace and Electronic Systems, ISSN: 0018-9251, Vol: 47, Issue: 3, Page: 1837-1849
2011
- 124Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We propose and assess new algorithms for adaptive detection and tracking based on space-time data. At design stage we take into account possible spillover of target energy to adjacent range cells and assume a target kinematic model. Then, resorting to the generalized likelihood ratio test (GLRT) we derive track-before-detect (TBD) algorithms that can operate in scan-to-scan varying scenarios and, more important, that ensure the constant false track acceptance rate (CFTAR) property with respect to the covariance matrix of the disturbance. Moreover, we also propose CFTAR versions of the maximum likelihood-probabilistic data association (ML-PDA) algorithm capable of working with data from an array of sensors. The preliminary performance assessment, conducted resorting to Monte Carlo simulation, shows that the proposed TBD structures outperform the ML-PDA implementations especially in terms of probability of track detection (and for low signal-to-noise ratio (SNR) values). © 2006 IEEE.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know