A robotic model of reaching and grasping development
IEEE Transactions on Autonomous Mental Development, ISSN: 1943-0604, Vol: 5, Issue: 4, Page: 326-336
2013
- 21Citations
- 27Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We present a neurorobotic model that develops reaching and grasping skills analogous to those displayed by infants during their early developmental stages. The learning process is realized in an incremental manner, taking into account the reflex behaviors initially possessed by infants and the neurophysiological and cognitive maturation occurring during the relevant developmental period. The behavioral skills acquired by the robots closely match those displayed by children. The comparison between incremental and nonincremental experiments demonstrates how some of the limitations characterizing the initial developmental phase channel the learning process toward better solutions. © 2013 IEEE.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know