PlumX Metrics
Embed PlumX Metrics

Qualitative reasoning for biological network inference from systematic perturbation experiments

IEEE/ACM Transactions on Computational Biology and Bioinformatics, ISSN: 1545-5963, Vol: 9, Issue: 5, Page: 1482-1491
2012
  • 3
    Citations
  • 0
    Usage
  • 15
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The systematic perturbation of the components of a biological system has been proven among the most informative experimental setups for the identification of causal relations between the components. In this paper, we present Systematic Perturbation-Qualitative Reasoning (SPQR), a novel Qualitative Reasoning approach to automate the interpretation of the results of systematic perturbation experiments. Our method is based on a qualitative abstraction of the experimental data: for each perturbation experiment, measured values of the observed variables are modeled as lower, equal or higher than the measurements in the wild type condition, when no perturbation is applied. The algorithm exploits a set of IF-THEN rules to infer causal relations between the variables, analyzing the patterns of propagation of the perturbation signals through the biological network, and is specifically designed to minimize the rate of false positives among the inferred relations. Tested on both simulated and real perturbation data, SPQR indeed exhibits a significantly higher precision than the state of the art. © 2004-2012 IEEE.

Bibliographic Details

Badaloni, Silvana; Di Camillo, Barbara; Sambo, Francesco

Institute of Electrical and Electronics Engineers (IEEE)

Biochemistry, Genetics and Molecular Biology; Mathematics

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know