Time-Aware Missing Healthcare Data Prediction Based on ARIMA Model
IEEE/ACM Transactions on Computational Biology and Bioinformatics, ISSN: 1557-9964, Vol: 21, Issue: 4, Page: 1042-1050
2024
- 48Citations
- 47Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations48
- Citation Indexes48
- 48
- CrossRef36
- Captures47
- Readers47
- 47
Article Description
Healthcare uses state-of-the-art technologies (such as wearable devices, blood glucose meters, electrocardiographs), which results in the generation of large amounts of data. Healthcare data is essential in patient management and plays a critical role in transforming healthcare services, medical scheme design, and scientific research. Missing data is a challenging problem in healthcare due to system failure and untimely filing, resulting in inaccurate diagnosis treatment anomalies. Therefore, there is a need to accurately predict and impute missing data as only complete data could provide a scientific and comprehensive basis for patients, doctors, and researchers. However, traditional approaches in this paradigm often neglect the effect of the time factor on forecasting results. This article proposes a time-aware missing healthcare data prediction approach based on the autoregressive integrated moving average (ARIMA) model. We combine a truncated singular value decomposition (SVD) with the ARIMA model to improve the prediction efficiency of the ARIMA model and remove data redundancy and noise. Through the improved ARIMA model, our proposed approach (named MHDP) can capture underlying pattern of healthcare data changes with time and accurately predict missing data. The experiments conducted on the WISDM dataset show that MHDP approach is effective and efficient in predicting missing healthcare data.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know