Self-Attention Pooling-Based Long-Term Temporal Network for Action Recognition
IEEE Transactions on Cognitive and Developmental Systems, ISSN: 2379-8939, Vol: 15, Issue: 1, Page: 65-77
2023
- 14Citations
- 7Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
IEEE Transactions on Cognitive and Developmental Systems, Volume 15, Issue 1, March 2023
1) Editorial IEEE Transactions on Cognitive and Developmental Systems Author(s): Huajin Tang Pages: 2 2) Vision-and-Language Navigation Based on Cross-Modal Feature Fusion in Indoor Environment Author(s): Shuhuan Wen, Xiaohan Lv,
Article Description
With the development of Internet of Things (IoT), self-driving technology has been successful. Yet safe driving faces challenges due to such cases as pedestrians crossing roads. How to sense their movements and identify their behaviors from video data is important. Most of the existing methods fail to: 1) capture long-term temporal relationship well due to their limited temporal coverage and 2) aggregate discriminative representation effectively, such as caused by little or even no attention paid to differences among representations. To address such issues, this work presents a new architecture called a self-attention pooling-based long-term temporal network (SP-LTN), which can learn long-term temporal representations and aggregate those discriminative representations in an end-to-end manner, and on the other hand, effectively conduct long-term representation learning on a given video by capturing spatial information and mining temporal patterns. Next, it develops a self-attention pooling method to predict the importance scores of obtained representations for distinguishing them from each other and then weights them together to highlight the contributions of those discriminative representations in action recognition. Finally, it designs a new loss function that combines a standard cross-entropy loss function with a regularization term to further focus on the discriminative representations while restraining the impact of distractive ones on activity classification. Experimental results on two data sets show that our SP-LTN, fed by only red-green-blue (RGB) frames, outperforms the state-of-the-art methods.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know