Enhanced self-sensing capability of permanent-magnet synchronous machines: A novel saliency modulation rotor end approach
IEEE Transactions on Industrial Electronics, ISSN: 0278-0046, Vol: 64, Issue: 5, Page: 3548-3556
2017
- 10Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper investigates a novel rotor configuration of a permanent-magnet synchronous machine (PMSM) in which a saliency modulation rotor end is added to the machine rotor to improve the self-sensing capability. The saliency-based self-sensing control method is widely adopted for position estimation at stand-still and low speed range. However, the performance is heavily affected by saturation effects for conventional PMSMs, because the machine saliency variates with increased fundamental stator flux under loaded operation. The proposed scheme provides an additional space anisotropic to the rotor. Saliency modulation of the rotor end is electrically asynchronous with the machine fundamental reference frame. Hence the tracked machine saliency provided by the rotor end is no longer affected by saturation effects. In addition, for medium and high speed ranges, the rotor end saliency can be modulated with the fundamental voltage and the rotor position can be tracked without superposed injection. A genetic algorithm optimization environment joined with finite element analysis allows obtaining optimized rotor end geometry for better position signal quality. The expected self-sensing performance is validated by experimental results.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know