Modeling and Compensation of Stiffness-Dependent Hysteresis for Stiffness-Tunable Tendon-Sheath Mechanism in Flexible Endoscopic Robots
IEEE Transactions on Industrial Electronics, ISSN: 1557-9948, Vol: 71, Issue: 8, Page: 9328-9338
2024
- 6Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Robot-assisted gastrointestinal endoscopic surgery requires flexible manipulators to possess a compact dimension and stiffness tuning capability. Current stiffness-tunable miniature manipulators (STMM) using tendon-sheath mechanism (TSM) experience the problem of stiffness-influenced hysteresis. To address this, we propose the first stiffness-dependent Modified Generalized Prandtl-Ishlinski (PI) model and a specific compensation strategy. First, we analyzed the stiffness tuning mechanism and extracted the stiffness parameter. Based on this, the analytical hysteresis model and its inverse function were built and verified in simulations and experiments, which increases the fitting accuracy of the hysteresis. Then, with the assistance of the compensation strategy, the real-time input-output relationship of the STMM's stiffness-tunable joints can be approximately linear. The average errors of trajectory tracking achieve a significant improvement of over 85%. This work provides a new method to model and compensate for the dynamic hysteresis in flexible endoscopic robots with the stiffness-tunable TSM.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know