I/O-Efficient Algorithms for Degeneracy Computation on Massive Networks
IEEE Transactions on Knowledge and Data Engineering, ISSN: 1558-2191, Vol: 34, Issue: 7, Page: 3335-3348
2022
- 5Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Degeneracy is an important concept to measure the sparsity of a graph which has been widely used in many network analysis applications. Many network analysis algorithms, such as clique enumeration and truss decomposition, perform very well in graphs having small degeneracies. In this paper, we propose an I/O-efficient algorithm to compute the degeneracy of the massive graph that cannot be fully kept in the main memory. The proposed algorithm only uses O(n) memory, where n denotes the number of nodes of the graph. We also develop an I/O-efficient algorithm to incrementally maintain the degeneracy on dynamic graphs. Extensive experiments show that our algorithms significantly outperform the state-of-the-art degeneracy computation algorithms in terms of both running time and I/O costs. The results also demonstrate high scalability of the proposed algorithms. For example, in a real-world web graph with 930 million nodes and 13.3 billion edges, the proposed algorithm takes only 633 seconds and uses less than 4.5GB memory to compute the degeneracy.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know