Equivalent circuit modeling of frequency-selective surfaces based on nanostructured transparent thin films
IEEE Transactions on Magnetics, ISSN: 0018-9464, Vol: 48, Issue: 2, Page: 703-706
2012
- 29Citations
- 29Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
An equivalent circuit is proposed to model frequency selective surfaces (FSSs) made of optically transparent metal patches. The field penetration through a unit cell of a simple FSS is modeled circuitally by a shunt admittance composed by inductance and capacitance, while the losses in the parts covered by metal thin film are modeled by resistances. The circuit results are validated by full-wave numerical simulations for different test configurations. The circuit model permits fast simulations adequate for FSS design. © 2012 IEEE.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know