Omnidirectional Steerable Forceps With Flexible Joints and Skin-Like Stretchable Strain Sensors
IEEE/ASME Transactions on Mechatronics, ISSN: 1941-014X, Vol: 27, Issue: 2, Page: 713-724
2022
- 3Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Omnidirectional steerable forceps in keyhole procedures provide significant advantages in assisting medical practitioners with better motion coordination, improved dexterity, precision control, and reachability. However, most existing forceps lack the sense of interactive proprioception, imposing physical and cognitive challenges to the medical practitioners during manipulation. Herein, we report handheld steerable surgical forceps with two degrees-of-freedom equipped with skin-like soft stretchable strain sensors to determine the orientation and improve the perception. The performance of omnidirectional forceps integrated with sensory skin is characterized. Due to the reduced number of mechanical parts in the forceps by virtue of parallel continuum joints, the direct translation of motion from the proximal to the distal end is achieved. The distal parallel flexible joint enables a bending angle up to 40° and a bending radius of 7.5 mm. The hydrogel-based silver nanowire sensors mounted on the forceps like a stretchable skin show a maximum gauge factor of 11.8 under 80% strains. A mathematical model is developed to determine the tooltip orientation. The developed model validated with visual tracking shows 90-97% accuracy for angular displacements up to 30° in all directions. Assisting medical practitioners in a clinical environment is demonstrated in a cadaveric setting by providing proprioceptive information of the tooltip through OFISS.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know